8y(5y+5)-5y^2=5(5y+5)

Simple and best practice solution for 8y(5y+5)-5y^2=5(5y+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8y(5y+5)-5y^2=5(5y+5) equation:


Simplifying
8y(5y + 5) + -5y2 = 5(5y + 5)

Reorder the terms:
8y(5 + 5y) + -5y2 = 5(5y + 5)
(5 * 8y + 5y * 8y) + -5y2 = 5(5y + 5)
(40y + 40y2) + -5y2 = 5(5y + 5)

Combine like terms: 40y2 + -5y2 = 35y2
40y + 35y2 = 5(5y + 5)

Reorder the terms:
40y + 35y2 = 5(5 + 5y)
40y + 35y2 = (5 * 5 + 5y * 5)
40y + 35y2 = (25 + 25y)

Solving
40y + 35y2 = 25 + 25y

Solving for variable 'y'.

Reorder the terms:
-25 + 40y + -25y + 35y2 = 25 + 25y + -25 + -25y

Combine like terms: 40y + -25y = 15y
-25 + 15y + 35y2 = 25 + 25y + -25 + -25y

Reorder the terms:
-25 + 15y + 35y2 = 25 + -25 + 25y + -25y

Combine like terms: 25 + -25 = 0
-25 + 15y + 35y2 = 0 + 25y + -25y
-25 + 15y + 35y2 = 25y + -25y

Combine like terms: 25y + -25y = 0
-25 + 15y + 35y2 = 0

Factor out the Greatest Common Factor (GCF), '5'.
5(-5 + 3y + 7y2) = 0

Ignore the factor 5.

Subproblem 1

Set the factor '(-5 + 3y + 7y2)' equal to zero and attempt to solve: Simplifying -5 + 3y + 7y2 = 0 Solving -5 + 3y + 7y2 = 0 Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. -0.7142857143 + 0.4285714286y + y2 = 0 Move the constant term to the right: Add '0.7142857143' to each side of the equation. -0.7142857143 + 0.4285714286y + 0.7142857143 + y2 = 0 + 0.7142857143 Reorder the terms: -0.7142857143 + 0.7142857143 + 0.4285714286y + y2 = 0 + 0.7142857143 Combine like terms: -0.7142857143 + 0.7142857143 = 0.0000000000 0.0000000000 + 0.4285714286y + y2 = 0 + 0.7142857143 0.4285714286y + y2 = 0 + 0.7142857143 Combine like terms: 0 + 0.7142857143 = 0.7142857143 0.4285714286y + y2 = 0.7142857143 The y term is 0.4285714286y. Take half its coefficient (0.2142857143). Square it (0.04591836735) and add it to both sides. Add '0.04591836735' to each side of the equation. 0.4285714286y + 0.04591836735 + y2 = 0.7142857143 + 0.04591836735 Reorder the terms: 0.04591836735 + 0.4285714286y + y2 = 0.7142857143 + 0.04591836735 Combine like terms: 0.7142857143 + 0.04591836735 = 0.76020408165 0.04591836735 + 0.4285714286y + y2 = 0.76020408165 Factor a perfect square on the left side: (y + 0.2142857143)(y + 0.2142857143) = 0.76020408165 Calculate the square root of the right side: 0.87189683 Break this problem into two subproblems by setting (y + 0.2142857143) equal to 0.87189683 and -0.87189683.

Subproblem 1

y + 0.2142857143 = 0.87189683 Simplifying y + 0.2142857143 = 0.87189683 Reorder the terms: 0.2142857143 + y = 0.87189683 Solving 0.2142857143 + y = 0.87189683 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.2142857143' to each side of the equation. 0.2142857143 + -0.2142857143 + y = 0.87189683 + -0.2142857143 Combine like terms: 0.2142857143 + -0.2142857143 = 0.0000000000 0.0000000000 + y = 0.87189683 + -0.2142857143 y = 0.87189683 + -0.2142857143 Combine like terms: 0.87189683 + -0.2142857143 = 0.6576111157 y = 0.6576111157 Simplifying y = 0.6576111157

Subproblem 2

y + 0.2142857143 = -0.87189683 Simplifying y + 0.2142857143 = -0.87189683 Reorder the terms: 0.2142857143 + y = -0.87189683 Solving 0.2142857143 + y = -0.87189683 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.2142857143' to each side of the equation. 0.2142857143 + -0.2142857143 + y = -0.87189683 + -0.2142857143 Combine like terms: 0.2142857143 + -0.2142857143 = 0.0000000000 0.0000000000 + y = -0.87189683 + -0.2142857143 y = -0.87189683 + -0.2142857143 Combine like terms: -0.87189683 + -0.2142857143 = -1.0861825443 y = -1.0861825443 Simplifying y = -1.0861825443

Solution

The solution to the problem is based on the solutions from the subproblems. y = {0.6576111157, -1.0861825443}

Solution

y = {0.6576111157, -1.0861825443}

See similar equations:

| (32.4+x)+(27.7+x)+x=197.5 | | 2(g+5)=g(g+5)+g^2 | | 2t+1+2t-3t=5+2 | | 9y+8=8y-6 | | 4-0.3k=4 | | 5-(6x-26)=7(x-5) | | -16t^2+112t-160=0 | | 0.66x=-6 | | 29=2x-5+4x | | 3(4n+4)-7=3n+19+2n | | 4(x+5)=16(x+2) | | x+40x=40 | | b^2-2b-6=0 | | x^2-17x-308=0 | | 4ln(7x)=32 | | 7-3(x+1)=5x+14-(x+12) | | 7t-t-6=5t-8 | | 18(x)=6(16-x) | | -3(x+2)+4x=12 | | 0=t^3+3t-2 | | 6y+3y=8y+2 | | 51(x)=3(144-x) | | 4y=-4x-40 | | -35x^2-41x-12=0 | | 8y=-8x+80 | | x(x+3)=201 | | x(x+2)+5(x)=46 | | 20(x)=5(15-x) | | 4m^2-64= | | 6b+11=b+47 | | x+(x-29.3)+(x+26.2)=201.8 | | v+(V-29.3)+(V+26.2)=201.8 |

Equations solver categories